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Majority Rule at Low Temperatures on the 
Square and Triangular Lattices 
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We consider the majority-rule renormalization group translbrmation applied to 
nearest neighbor lsing models. For the square lattice with 2 by 2 blocks we 
prove that if the temperature is sufficiently low, then the translbrmation is not 
delined. We use the methods of van Enter, Fernandez, and Sokal, who proved 
the renormalized measure is not Gibbsian for 7 by 7 blocks if the temperature 
is too low. For the triangular lattice we prove that a zero-temperature majority- 
rule translbrmation may be defined. The resulting renormalized Hamiltonian is 
local with 14 difl'erent types of interactions. 

KEY WORDS: Majority-rule renormalization-group transformation; non- 
Gibbsian measures. 

1. I N T R O D U C T I O N  

The major i ty-rule  renormal iza t ion-group  
defined by 

t ransformat ion  is formally 

e - ' " ~  T(a,a')e "'~ (1) 

Here a are the spins in the original system and a '  are the block spins (or 
image spins). All spins are Ising spins, i.e., take on the values - 1 ,  + 1. 
Here H is fl times the original  Hami l ton ian ,  which th roughout  this paper  
will jus t  be the ferromagnetic nearest ne ighbor  Hami l ton ian .  T(a, a ' )  is the 
kernel for the major i ty  rule t ransformation.  If the lattice and  block size are 
such that  the n u m b e r  of spins in a block is odd, then this kernel only takes 
on the values 0 and  1. The kernel is 1 if in every block a major i ty  of the 
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spins agree with the block spin, and 0 otherwise. If the number of spins in 
a block is even, then there can be a "tie" in a block. In such systems the 
kernel is zero if there is a block with a clear majority and the majority 
disagrees with the block spin. If every block has either a clear majority 
which agrees with the block spin or a tie, then the kernel is equal to 2-" ,  
where n is the number of blocks in which a tie occurs. These factors of 1/2 
are included so that T(a ,o ' )  is a probability kernel, i.e., for every o, 
Z , '  T(o,  0 ' ) =  1. Equation (1) formally defines a new Hamiltonian H '  for 
the block spins. 

Equation (1) cannot be used to directly define H ' ( a ' )  in the infinite- 
volume limit. One must use (1) for finite volumes and then try to take the 
infinite-volume limit. Another approach, emphasized in ref. 18, is to apply 
the majority rule transformation to infinite-volume Gibbs measures. The 
renormalized measure is always defined, but one must now deal with two 
problems. First, the original Hamiltonian may have more than one infinite- 
volume Gibbs measure. Second, the renormalized measure may not be the 
Gibbs measure of any reasonable Hamiltonian. Van Enter et al. ~ ~'" ~ used 
ideas of Griffiths and Pearce ~s 7~ and Israel cgJ to prove that at low tem- 
peratures the renormalized measure is non-Gibbsian for majority rule for 
a variety of block sizes, the smallest being 7 by 7. The idea behind the 
proof is to find a special block-spin configuration such that when the 
system of original spins is conditioned on this block-spin configuration, 
there is a phase transition. Loosely speaking, the strong correlations in the 
constrained original spin system then prevent the renormalized measure 
from being quasilocal. 

There now exists a large collection of examples in which the renor- 
malized measure is not Gibbsian. A review and extensive bibliography may 
be found in ref. 19. In many of these examples, including the case of 2 by 
2 majority rule considered here, the trouble is caused by block-spin 
configurations (like the checkerboard one) that will never be seen at low 
temperature. Insisting that the renormalized measure be quasilocal 
uniformly in the block-spin configuration may be asking too much. By 
using a weaker definition of the renormalized Hamiltonian, it is often 
possible to prove that a renormalized Hamiltonian may be defined in cases 
where the renormalized measure is not uniformly quasilocaU 4' ~'~ 

To show that the transformation is not defined for 2 by 2 blocks, we 
follow the method of ref. 18 closely. The special block-spin configuration 
that they use for 7 by 7 blocks is the "doubly alternating" configuration. 
This configuration consists of 2 by 2 groups of block spins of the same sign 
which alternate, i.e., for each such group of four block spins the four adja- 
cent groups of four block spins have the opposite sign. With this block-spin 
constraint the original spins have two ground states. In one ground state 
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most of the spins are + 1, but there are 10 by 10 islands of - 1  arranged 
so that the majority rule constraint is satisfied. The special block-spin 
configuration we use is the alternating or checkerboard configuration in 
which every pair of nearest neighbor block spins are not equal. For 2 by 
2 blocks with this block-spin configuration we will show that the original 
spins have four ground s ta tes-- the four "strip" states. Figure 1 shows one 
of them. Given the methods of ref. 18, the only nontrivial part  of our proof  
is to show that these are indeed the ground states, a "Peierls condition" is 
satisfied, and a pure phase may be selected by a suitable choice of boundary 
conditions for the block spins. We do this by showing that the Hamiltonian 
with the majority rule constraint can be written as an "m-potential. ''18~ 
To verify that our rewritten form of the constrained Hamiltonian is indeed 
an m-potential, we enlist the help of a computer. There are close analogies 
between this paper  and ref. 15. The constrained Ising model in a large field 
considered in that paper  also has four striplike ground states. They must 
use a nonsquare volume to pick out a pure phase, a trick which we also 
employ. 

Our  final result is Theorem 4.5 of ref. 18 with "7 • 7" replaced by 
"2 x 2." For the convenience of the reader we restate the theorem. In the 
following, l i t  denotes the probability measure on the block spins, which is 
obtained from the Gibbs measure/ t  for the original spins and the transfor- 
mation T in the usual way/~81 

T h e o r e m  1. (For  7 by 7 blocks this is theorem 4.5 of ref. 18.) For 
all fl sufficiently large, the following holds: Let It be any Gibbs measure for 

+ + + + + + + + 
| | | | 

| | | | 
+ + + + + + + + 

+ + + + + + + + 
| @ | | 

| | | | 
+ + + + + + + + 

Fig. I. Circled spins are block spins, uncircled spins are original spins. The block spins are 
in the checkerboard configuration, and the original spins are in one of the four ground states 
which we call "'strip states." 
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the two-dimensional Ising model with nearest neighbor coupling fl and 
zero magnetic field. Let T be the majority rule transformation on 2 x 2 
square blocks. Then the measure/ . tT is not consistent with any quasilocal 
specification. In particular, it is not the Gibbs measure of any uniformly 
convergent interaction. 

Next we turn to our second result which concerns the zero tem- 
perature limit of the majority rule transformation. One approach would be 
to take a ground-state measure p for H and then attempt to define H'  by 
asking that pT be a ground-state measure of H'. However, many different 
Hamiltonians can give rise to the same ground-state measure, so this 
approach is not likely to yield a well-defined renormalized Hamiltonian. 
Our approach is to consider a finite volume and take the zero-temperature 
limit of ( 1 ) to obtain 

H'(a') = min H(a) (2) 
a:  T l a ,  a ' l  # 0 

[ In ( 1 ) the inverse temperature fl is hidden in H, so in taking this limit we 
must divide H '  by ft.] We then ask if this zero-temperature majority-rule 
transformation has an infinite volume limit, i.e., if H ' (a ' )  has an infinite- 
volume limit which belongs to some reasonable Banach space of 
Hamiltonians. If one looks at the argument which shows that the majority 
rule transformation is not defined at low temperature for 2 by 2 and 7 by 
7 blocks, it is easy to adapt it to show that (2) does not have a nice 
infinite-volume limit in this case. For  the triangular lattice the situation is 
quite different. We will prove that not only does (2) have an infinite- 
volume limit, but the renormalized Hamiltonian is a local function of the 
block spins. The precise result is as follows. A Hamiltonian is said to be 
local if it contains only a finite number of terms up to translations. In the 
following we work with finite volumes which are unions of blocks and 
which admit periodic boundary conditions. This last condition means that 
the finite volume and translations of it tesselate the lattice. 

Theorem 2. For finite volumes A which admit periodic boundary 
conditions, define H',(a') by (2), where H(a) is the nearest neighbor 
ferromagnetic Hamiltonian for the original spins in A with periodic bound- 
ary conditions. There is a local translation-invariant Hamiltonian H'(a') 
on the block spins such that for sufficiently large volumes A, H'~(a') equals 
the restriction of H'(a') to A with periodic boundary conditions. (The local 
renormalized Hamiltonian is given in Table 1.) 

Of  course, this theorem does not prove anything about majority rule 
on the triangular lattice for low but nonzero temperatures. However, it 
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does show that the argument used to prove that the transformation is not 
defined for 7 by 7 and 2 by 2 blocks on the square lattice will not work 
for the triangular lattice. The theorem suggests the possibility that majority 
rule is actually defined for the triangular lattice at low temperatures, 
possibly for all temperatures. 

2. SQUARE LATTICE WITH 2 BY 2 BLOCKS 

Consider the checkerboard block spin configuration (ref. 18 calls this 
configuration the fully alternating configuration). We will show that with 
the constraint imposed by this block-spin configuration, the system of 
original spins has four periodic ground states. One of them is shown in 
Fig. 1. The other three are obtained by rotating this one by 90 deg and by 
applying a global spin flip to these two spin configurations. We will refer 
to these four states as the strip states. 

A Hamiltonian H may be written in many ways as 

/4=y '  ~.., (3) 
.4 

where A is summed over finite subsets up to some fixed size and ~..~ is a 
function of the spins in A. Such a decomposition is said to be an m-poten- 
tial if there is a configuration a such that for every A 

~..,(r = min ~..~ (4) 

In other words, one can find a single configuration which simultaneously 
minimizes every term in the decomposition of the Hamiltonian. 

Proposition 3. H may be written as an m-potential. Furthermore, 
the only configurations which simultaneously minimize every term in this 
representation of the Hamiltonian are the four strip states. 

Proof. We will take the original Hamiltonian to be 

H =  ~ ( I -a ,a j ) /2  (5) 
<?/) 

so that a pair of nearest neighbor spins that agree has energy 0 and a pair 
that disagrees has energy 1. Our representation of this Hamiltonian as an 
m-potential is rather complicated, so we will motivate it by showing why 
a natural simpler representation is not an m-potential. Divide the lattice 
into 4 by 4 squares so that each square contains four of the 2 by 2 blocks 
used by the majority rule. 
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Fig. 2. The original Hamiltonian is the sum of the three types of terms Ek, Hkt. and V~. 
The block spins are not shown here. 

Let Ek be the sum of  the terms in (5) for which the bond  ( / j ' )  is 
entirely in square k. For  squares i and j which are "hor izonta l ly  adjacent ,"  
i.e., they share a vertical edge, let Hkt be the sum of the terms such that  one 
endpoint  of  the bond  ( / j )  is in square  k and the o ther  in square  L For  
"vertically adjacent"  squares k and I, Vk/ is defined similarly. Figure 2 
shows Ek, Hk~ and Vks. With these definitions, 

H=EEk+ Z Hk,+ ~ Vk, (6) 
k < / , ' 1 )  : I ~ o r  ( / , - / )  : v e t  

The first sum is over  squares k. The  second is over  horizontal ly adjacent  
squares k and 1, and the third is over  vertically adjacent  squares k and L 
Each pair  of  adjacent  squares appears  only once in the above. We make  
the convent ion that  in Hk~, k is the left square and I is the right square. 
In V~.~, k is the upper  square  and l is the lower square. In a strip state, H,_~ 
and Vk~ are always zero, and Ex. = 8. Figure 3 gives a configurat ion which 
gives a lower value for Ek, and thus this decompos i t ion  of the Hami l ton ian  
is not  an m-potential .  

Fig. 3. 

+ 4- - |  | | | 
4- 4- 4- 4- 4- 4- 4- -F 

+ + + + + + + + 
| | | | 

+ + 

(a) (b) 

Example showing that the strip states do not give the minimum of Ek. The configura- 
tion in (b) has lower E k than the strip state shown in (a). 
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To modify the above decomposition of the Hamiltonian to give an 
m-potential, we introduce four functions L~., R, ,  U,, Dk, each of which 
only depends on the spins in square k (L, R, U, D stand for left, right, up, 
down, respectively). Define 

E, = Ek + Lk + Rk + Dk + Uk 

I:Ikl = H k l  - -  R k  - -  L /  

P,, = V , , -  D~. - U, 

Then we have 

H=ZL'k+ Z / lk ,+  Z lPk, (7) 
k ,, k l )  : h o r  ~. kl), : v e r  

This equation holds for any choice of the functions Lk, Rk, U~., D k. Of 
course the hard part is finding a choice of these functions such that (2) is 
an m-potential. We will find a choice for which/~k ~> 8, H,/~> 0, ~-//> 0, and 
these lower bounds are all attained by the strip configurations. 

Some explanation of the left, right, up, down terminology is in order. 
Each of the functions L, ,  R k, UI,, D, is a function of the 16 spins in the 4 
by 4 square. However, they depend on these 16 spins only through the 
value of Ek and the four spins along one of the four edges of the square. 
Left, right, up, and down refer to which edge. Unfortunately, this causes 
some confusion when one considers H~-t and I,v,/. In / /k / ,  k is the left square 
and l is the right square. Now, Hkt depends on the spins along the right 
edge of k and the left edge of l. So we subtract Rk and Lt in the definition 
of Bk,. 

We give the definition of R k, along with a bit of motivation. The 
definitions of the other three functions are trivially obtained by rotation. 
We denote the four sites on the right edge of square k by 1, 2, 3, 4 (see 
Fig. 4). In the strip states the four spins (o ' t ,  0"2, 0"3, aa) c a n  be ( + + + + ), 
( ) , ( + - - + ) ,  or ( - + + - ) .  If E , < 8  and the four spins agree 
with one of these four configurations, then Rk = 0. If E ,  < 8 and the four 
spins do not agree with any of these four cases, then R~. = 1. If E ,  = 8, then 
Rk=0 ,  regardless of the values of a~, a2, a3, a4. Note that in a strip 
configuration, LA- = Rk = Uk = Dk = 0. 

The motivation for this part of the definition of Rk is to make E~. _-> 8 for 
those configurations which have E,  < 8. As an example, consider Fig. 3(b). 
This configuration has E k = 6. But Lk = Rk = Uk = D, = 1, so Ek = 10. If we 
completed the definition of Rk by defining it to be zero whenever E,  > 8, 
we would find that ~kt can be negative. An example is shown in Fig. 5. For 
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Fig. 4. The definition of R~ depends on the value of E~ and the four spins labeled 1, 2. 3, 4 
in the f i g t t r e .  

the left square E k = 9, and for the right square E~ = 7. Obvious ly  Hk~ = 0. 
But L~= 1, so if Rk were defined to be 0, then H~.z = 0 would be negative. 
To  fix this p rob lem we need to make  Rk negative in some cases. O f  course 
we must  do this in such a way that/~a, is still bounded  below by 8. 

We now complete  the definition of Rk. If  Ek > 8, we set R k = -  1 if 
three or  more  of  the spins at 1, 2, 3, 4 are different f rom the block spin of  
the block in which they sit. Otherwise,  Rk = 0. No te  that  Rk is still zero in 
all four strip states. We want  to show that  

/~k>_- 8, Dk/>~O, Pk/>~0 (8) 

This is easily done on a computer .  With  the major i ty  rule constraint ,  the 
num ber  of  al lowable configurat ions on a 2 by 2 block is l l. So for a 4 by 
4 block it is 114= 14, 641. This is small enough that  we can verify L'k>~8 
by simply comput ing  every case. The  n u m b e r  of  cases to be checked for the 
second and third inequalities is ( 14, 641 )2 = 214, 358, 881. Luckily, they do 
not  all need to be checked. Since Hkt>~ 0, we have /~kt>~ 0 if R k + Lz~< 0, 
This reduces the n u m b e r  of  cases that  must  be explicitly compu ted  to 

+ + - + + + 

| | | 0 
+ + -- + + + + + 

+ + + + + + + + 

0 | 0 | 

k 1 

Fig. 5. An example which shows why we must make R~ negative Ibr some spin configurations. 
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something manageable. The result of the computer program is that (8) is 
indeed true. Thus we have succeeded in writing the Hamiltonian as an 
m-potential. 

Finally, we need to determine the ground states. The four strip states 
simultaneously minimize each of Ek,/~kt, and I2k~. We will show that these 
are the only configurations that do this. We start by asking what configura- 
tions on a square have Ek = 8. According to the computer, there are 233 such 
configurations, including the four strip states. We now consider a square k 
and the four squares adjacent to it. (We label them as follows: / = u p ,  
j = right, 1 = down, m = left.) We ask for the configurations on square k for 
which it is possible to find configurations on squares i, j, l, m such that 

g:~ = Ei = /~ j  = /~ /= /~ , , ,  = 8 

~qkj = ~q,,,k = ; , k  = ; k ,  = 0 
(9) 

Again, we enlist the help of the computer. The answer is that there are only 
four such configurations on square k, the four strip states. Thus in a 
ground state every 4 by 4 square is one of the strip states. In the strip states 
L~.=R k = U k = D k = 0 ,  so (9) implies H~:j=H,,,k=Vi~.=Vk/=0. This 
implies that in a ground state we have the same strip state in every 4 by 
4 square. This completes the proof  of Proposition 3. I 

Let a',.~, denote a checkerboard block-spin configuration. We have shown 
that when the Hamiltonian H(a) is restricted to a with T(a, a',.~,)#0, then 
H(a) is an m-potential with four ground states. It follows from a theorem 
of Holsztynski and Slawny ~ that this restricted H satisfies the sort of 
Peierls condition that one needs in order to carry out Pirogov-Sinai 
theory. Pirogov-Sinai theory implies that the original spin system condi- 
tioned on the checkerboard block-spin configuration will have four Gibbs 
states at low temperature that are small perturbations of the four ground 
states. The conditioned system we must consider is not simply given by 
restricting H(a) to the configurations with T(a, a',.h)#0. We must also add 
- l n  T to the Hamiltonian. The Ising Hamiltonian comes with a factor of 
fl, so - I n  T is a small perturbation which can be handled by the Pirogov-  
Sinai theory. (Pirogov-Sinai theory is needed here rather than just a simple 
Peierls argument because the rotational symmetry of the lattice is being 
broken as well as the global spin-flip symmetry.) An introduction to 
Pirogov-Sinai theory in the context in which we need it may be found in 
Appendix B of ref. 18. The original reference is ref. 13. See also refs. 2, 10, 
14, and 20. 

Pirogov-Sinai theory establishes the phase transition that is respon- 
sible for the renormalized measure being non-Gibbsian. However, we are 
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not finished. To apply the argument of ref. 18, we must show that one of 
the four pure phases may be selected by a suitable choice of boundary con- 
ditions. This would be easy if we were free to choose the boundary condi- 
tion for the original spins. Unfortunately, we must show that this pure 
phase can be selected by a choice of boundary condition for the block 
spins. The special block-spin configuration we use to select a pure phase is 
shown in Fig. 6. Note that it is based on a finite volume in the shape of 
a parallelogram rather than a square. The two horizontal boundaries of the 
parallelogram favor one of the four strip states. The two boundaries at a 
45 deg angle with respect to the lattice directions are neutral in the sense 
that each of the four strip states has the same boundary energy where it 
hits these boundaries. To prove that this block-spin configuration does 
indeed pick out one strip state, we show that the Hamiltonian can be 
written as an m-potential with a unique ground state. The strategy is the 
same as before, but we must modify the definition of the functions Lk, Rk, 
Uk and D~. in the vicinity of the boundary. The details are provided in the 
Appendix. 

Finally, we need to show that by changing the boundary condition for 
the block spins, we can change the distribution of the block spins near the 
origin. This then implies that the renormalized measure cannot be quasi- 
local, i.e., is not consistent with any quasilocal specification. To do this we 
consider four block spins arranged in a square located near the origin. In 
the language of ref. 18, we "unfix" these four block spins. The four block 
spins we unfix are indicated in Fig. 6 by circles. Inside the four blocks the 
original spins will all be + 1 with probability 1 - O(e-/~). Let S denote the 

+ + § 2 4 7  

+ + + - + - + - i +  - + - + - + - + + 
+ 4 +  _ 3 +  ~ _ l +  2 +  ] +  + 4 +  _ - +  _ + r - I +  

, 4 +  _ 3 +  _ 2 +  _ I +  _ + i _ I +  2 +  ~ +  + 4 +  

+ 4 +  _ 3 +  _ 2 +  _ I +  - I +  - + I - ' + '  3 +  + 4 +  

+4+ _3+ _2+ _t+ 0 0 _1+ _Z+l_3 + + +i 
+ + + - + - + - + - + - + - + - i +  + 

_ 1 +  _ 1 +  I +  +4+ 3 +  _ +  - _~ _.~+1+4+ 

+ + + - + - + - + - + - § - § - + + I  
§ 3 +  2 +  I +  l +  I +  2 §  3 +  +%1 

+ + + - + - + - §  

+4+ _3.  2 +  _1+ I +  I +  �9 _3+ _.+ +4+ 
+ + + + + + + + + + § 2 4 7  

§  + 5 +  + 5 +  + 4 §  

Fig. 6. The special block-spin configuration that picks out one of the pure phases Ibr the 
original spin system conditioned on the checkerboard block-spin conliguration. Note that 
only block spins are shown. We leave it to the reader to draw in tile strip state that is picked 
out. Tile four block spins that are "~unfixed" are indicated by circles. 
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set containing the sites of the four block spins that were unfixed. Let Z be 
the indicator function for the event that all four of these block spins are 
equal to + l .  So z = l ( a ' g =  + l ,  i eS) .  Let E' denote expectation with 
respect to the renormalized measure /~T on the block spins. E'(z[S") 
denotes the conditional expectation of Z where we condition on the block 
spins not in S. This is a function of the block spins, so we write it as 
E'(zIS")(tr'). (Of course, it actually only depends on a'; with i ~ S.) Let U+ 
be the set of block-spin configurations which agree with the block spin con- 
figuration shown in Fig. 6 and are arbitrary outside of the region shown in 
the figure. This is an open set in the product topology. We have shown that 

E'(xIS")(a ' )=l-O(e /~), Vcr'EU+ (10) 

Now suppose that we modify Fig, 6 as follows. We increase the height 
of the parallelogram by two block spins by moving each of the horizontal 
sides of the parallelogram by one block spin. The border of the 
parallelogram still consists of plus block spins, and the interior is the same 
checkerboard configuration as in Fig. 6. But now we will get the pure phase 
which is the global spin flip of the pure phase we had before. Hence the 
tbur block spins in S will be - 1  with probability 1 -  O(e-/~). So 

E'(zlS")(~r')=O(e /~), Va'~U (11) 

where U is the set of block-spin configurations which agree with this 
modified version of Fig. 6 and are arbitrary outside of the parallelogram. 
The above estimates are uniform in the size of the parallelogram, so 
this proves that the conditional distribution of the four block spins we 
unfixed is essentially discontinuous and so cannot come from a quasilocal 
specification. 

Our proof that the majority rule transformation is not defined at low 
temperature for 2 by 2 blocks is driven by the phase transition that takes 
place for the system of original spins with the constraint given by the 
checkerboard block-spin configuration. Our proof requires that the tem- 
perature be very low. However, one might expect that the transformation 
will not be defined for all temperatures below the critical temperature of 
this constr~iined system. Monte Carlo calculations of Ould-Lemrabott 
indicate that the critical fl is approximately i.0. c~2~ (For comparison, the 
critical fl of the unconstrained Ising model is about 0.44.) Cirillo and 
Olivieri studied a slightly different majority rule transformation with 2 by 
2 blocks. ~3~ When there is a tie in the block they take the block spin to 
equal the spin in the upper left corner of the block. They found that the 
critical fl for the constraint of the checkerboard block spin configuration is 
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approximately 1.6. Benfatto et al. did a Monte Carlo study of a renor- 
malization group transformation in which the block spin is equal to the 
sum of the spins in the block) ~ For the block-spin configuration in which 
all the block spins are zero, they found that the constrained system's 
critical fl was only about 10% higher than that of the original 
unconstrained model. 

3. T R I A N G U L A R  LATTICE AT T = 0  

In this section we prove Theorem 2. For the triangular lattice the 
blocks used by the majority rule are in fact triangles containing three sites. 
We will continue to refer to these triangles as blocks. Given a block-spin 
configuration, the ground state of the original spins subject to the majority 
rule constraint imposed by the block-spin configuration need not be 
unique. Luckily, this possible degeneracy (which can be rather large) does 
not concern us. To compute the minimum in (2), we need only find one 
ground state. We will give an algorithm for constructing one ground state. 
The algorithm will be local--the spin at a site is determined by the block 
spin for the block of that site and the block spins of the six blocks that 
surround that block. 

Consider site i in Fig. 7. The four block-spin sites closest to site i are 
labeled L aT, K, L in the figure. We need to give these block spins names. 
We will refer to I as the "block spin of site i." Now suppose we stand at 
block spin I and face site i. Block spin J is the closest block spin in the 
forward direction, so we call it the "forward block spin of site i." Block spin 
K is the closest block spin to the left, so we refer to it as the "left block spin 
of site i." We call L the "right block spin of site i." We first show that it 

Fig. 7. Labeling of the original spins (circles) and block spins (squares) used in Proposition 4 
and Table I. 
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is possible to find a g round  state with the following p roper ty  for every site. 
If  at least one of  the forward,  left or  right b lock spins agrees with the block 
spin of  the site, then the spin at the site agrees with the block spin of  the site. 
As an example,  consider  Fig. 7. If  a ) =  + 1 and at least one of a.), a)o  a'L 
equals + 1, then ai is + 1. (We are not  claiming that  every ground  state has 
this proper ty ,  only that  at least one does.) In the following propos i t ion  we 
break  this p roper ty  into two proper t ies  for the sake of  the proof. 

Proposition 4. There  is a g round  state with the following properties.  

(I) If  i is a site with its block spin equal  to its forward block spin, 
then a i equals the block spin of  i. 

( I I)  If  i is a site with its b lock spin equal  to either its left block spin 
or  its right block spin, then ai equals the block spin of  i. 

Proof. We start  by showing that  there is a g round  state with 
proper ty  I. It is enough to consider  the case a '~=a' j= +1.  Suppose 
ai = - 1 .  By the major i ty  rule constraint  we must  have o~j = ak = + 1. Since 
a )  = + 1, the major i ty  rule constra int  implies that  at least one of  a,,, and a,, 
is + 1. Thus  at least three of  the nearest  neighbors  of  a;  are + 1. So changing 
a~ from - 1 to + 1 will not  raise the energy. Applying this a rgument  where 
needed, we obtain  a ground state with p roper ty  I. 

N o w  we take a g round  state with p roper ty  I, and show that  we can 
obtain  a g round  state with p roper ty  II. It suffices to consider  the case a ) =  
a),. = + 1. By proper ty  I, this implies at  = + 1. Suppose  a i = - 1. Then o~j = 
ak = + 1. Thus  at least three of  the nearest  neighbors  of  a~ are + 1. So 
changing ai  from + 1 to - 1  will not  raise the energy. II 

Given a block-spin configurat ion,  the above  two propert ies  determine 
the g round  state at a site unless the block spin of  that  site is different from 
all three of  the forward,  left and right block spins of  the site. Consider  
Fig. 7 and define three conditions: 

! i i t (Ci) a j = a ~ . = a L =  - a l .  

(Cj) ' ' = a , , v  ~ a L a t l  , ~ - -  G I .  

(Ckt  . , , / -  / , - # / , = - a / .  

I f  (Ci) does not  hold, then the two propert ies  in Propos i t ion  4 deter- 
mine a~. Likewise, they determine aj  unless (Cj) holds, and determine ak 
unless (Ck)  holds. Suppose  that  (Ci) holds and to be concrete  consider the 
case aj'  = a/, . '  = aL' = - 1  and a~' = + 1. In this case, p roper ty  I implies that  
a,,, = a,, = - 1 .  P roper ty  II implies a t =  a/, = - 1 .  Thus  at least four of  the 
nearest  neighbors  of  ai  are - 1. So if a~ = + 1, we can lower the energy by 
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changing it to - 1. However, if one of o~j or ak is - 1, then the majority rule 
constraint does not permit such a change. If  neither of (Cj) or (Ck) hold, 
then aj = at. = + 1, and so the ground state must have ai = - 1. If two or 
more of (Ci), (Cj), or (Ck) hold, then for one of the sites for which the 
condition holds the corresponding spin must be - 1 .  We showed above 
that when condition (Cx) holds, the four nearest neighbors of site x outside 
of the block containing x are all opposite to the block spin of x. So when 
two of these conditions hold, we will have the same energy no matter  
which site we choose to put the - I  at. 

We now have an explicit algorithm for finding a ground state. Given 
' ' ' a'L, ' ' ' the spins ai, a i , a k  are deter- the block spins a I, a j ,  a K, a M ,  a N ,  a t , ,  

mined as follows. 

I. If  (Cx) does not hold, then set a.,. = a), where x = i, j,  k. 

2. If (Cx) holds and the other two of (Ci), (Cj), and (Ck) do not, 
then set a,. = - a ) .  

3. If two or more of (Ci), (Cj), and (Ck) hold, then set a,. = - a )  for 
one of the x for which (Cx) holds and set a , . = a )  for the other two sites. 
(This step is ambiguous, but we can remove the ambiguity by making some 
arbitrary rule for the choice of  the site x.) 

The above algorithm is local. To determine the value of an original 
spin at a site, we only need to know the values of  the block spins in a 
neighborhood of that site. Thus the ground-state energy is a local function 
of the block spins. We compute it as follows. Consider the 12 blocks shown 
in Fig. 8. Given the values of the block spins for these 12 blocks, our  algo- 
rithm determines the values of the original spins which are in the three 
inner blocks. The nine nearest neighbor bonds shown in the figure are 

Fig. 8. Picture used in computing the local Hamiltonian H'. 
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chosen so that when they are translated by all translations commensurate 
with the block-spin lattice, we get every bond in the original lattice exactly 
once. Thus the ground-state energy H ' (a ' )  is obtained by computing the 
energy of these nine bonds and then summing over translations. Obviously 
the support of a term in H '  must be a subset of the block spins shown in 
Fig. 8 or a translation of this set. In fact, we find that the only terms that 
actually appear in H' are those with support contained in some set of seven 
block spins arranged in a hexagon along with the block at the center of the 
hexagon. For example, the seven block spins shown in Fig. 7 are such a 
hexagonal set. 

While the original triangular lattice is invariant under rotations by a 
multiple of 60 deg, the blocking partially breaks this symmetry and so H '  
need only be invariant under rotations by multiples of 120 deg. In addition 
to this rotational symmetry, the blocked lattice is also invariant under 
some reflections. Taking these symmetries into account, H'  has 15 different 
terms. They are given in table I. Only one element from each symmetry 
class is given in the table. 

The arguments we have given apply in any finite volume with periodic 
boundary conditions provided the volume is not so small that the sorts of 
regions we have been considering wrap back around on themselves. Thus 
we have proved Theorem 2. 

T a b l e  I. T e r m s  in t h e  Loca l  H a m i l t o n i a n  H ' "  

Set of sites Coefficient Symmetry factor 

I, J 26/16 3 
L, K 2/16 3 
.I, P - 3 / 1 6  3 

I, J, L, K - 4 / 1 6  3 
J, L, P, K - 3 / 1 6  3 
J, N, P, M 1/16 3 
I, L, P, K 5/16 I 
L J, N. M - I / 1 6  I 
L J, L, P 3/16 6 

J, L, N, P - 1 / 1 6  6 
L ,  N, M, K -1 /16  3 

L J, P, M 1/16 6 
J, L, N, P, M, K 1/16 1 
L L, N, P, M, K 1/16 3 
L J, L. N, M, K - I / 1 6  3 

"The  sites are labeled as in Fig. 7. Only one term from each symmetry 
class is shown. 
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A P P E N D I X  

In this appendix we consider the system of original spins with the 
constraint imposed by the block-spin configuration shown in Fig. 6 from 
Section 2. We want to show that the Hamiltonian can be represented as an 
m-potential and has a unique ground state in the interior of the 
parallelogram. The strategy is the same as in Section 2. The only difference 
is in the definition of the functions Lt., Rk, Dk, and Uk. These functions now 
depend on where the square k is in relation to the parallelogram in Fig. 6. We 
divide the squares into five types, labeled 1-5, according to where the square 
is. See Fig. 6. The definitions of the functions are a bit involved. We will not 
attempt to motivate them; they were found mainly with trial and error and 
a little intuition. We should emphasize that they are by no means unique. 

To define the functions Lk, Rk, Uk, Dk, we introduce a little notation. 
Recall that each of these functions is a function of a four by four square in 
the original lattice. For functions L k, Rk, Uk, or Dk, the "four boundary 
spins" will refer to the four spins along the left, right, upper, or lower edge 
of the square, respectively. Each original spin belongs to a two by two 
majority-rule block. We will refer of the block spin of that two by two 
block as the block spin associated to the original spin. Now let n,, be the 
number of the four boundary spins that are not equal to their associated 
block spin. Let me be the number of the four boundary spins that are equal 
to - 1 .  Finally we define a variable strip that takes on the values true and 
false, strip is true if the four boundary spins agree with the four boundary 
spins in some strip configuration, i.e., they must be one o f ( +  + + + ), 
( ) , ( + - - + ) , o r ( - + + - ) .  

If square k is of type 1, then the functions Lk, Rk, Uk, Dk are all 
defined as follows. If Ek < 8 and strip is not true, then the value is + 1. 
If E k > 8 and n,~ > 2, then the value is - 1 .  Otherwise the value is 0. 

Now consider a square k of type 2 near the left boundary. The func- 
tions Ra. and D k are defined as they were for type 1 squares. The functions 
L~. and Uk are defined as follows. If Ek < 8 and n,~ = 0, then the value is + 1. 
If E k > 8 and n~ > 2 then the value is - 1 .  Otherwise the value is 0. The 
definitions for a type 2 square near the right boundary are obtained in the 
obvious way by symmetry considerations. 

For  a square k of type 3 located near the left boundary the definitions 
are as follows. Lk and Uk equal m,v when m(~-G< 3 and equal 3 when m~ = 4. 
The definition of Rk and Dk is a bit more complicated when k is of type 
3. If Ek+La .+Uk~<9  and strip is not true, then their value is +1.  If 
Ek t> 10 and n,~> 2, then their value is - 1 .  The definitions for a type 3 
square near the right boundary are obtained in the obvious way by sym- 
metry considerations. 



Majority Rule at Low Temperatures 1105 

If square k is of type 4 and near the left boundary, then Rk and D k 
equal -no when no<~3 and equal - 3  when no=4. The functions L k, Uk 
are identically zero when k is of type 4. Again, symmetry determines the 
definitions when the square is near the right boundary. 

If square k is of type 5 and near the top boundary, then Dk equals -- 1 
when Ek > 0 and equals 0 otherwise. The functions L k, Rk, Uk are identi- 
cally zero. If square k is of type 5 and near the bot tom boundary, then Uk 
equals -- 1 when Ek > 0 and equals 0 otherwise. The functions Lk, Rk, D,~. 
are identically zero. 

In the strip state selected by the block spin configuration in Fig. 6, we 
have Ek = 8, 8, 10, 0, 0 for k of type 1, 2, 3, 4, 5, respectively. We also have 
H,~= Vk/= 0 and Lk = Rk = Uk = Dk = 0 in this strip state except for the 
following cases. If k is type 4 and l is type 3 and k is immediately left of 
1, then H , t =  2 and L~= 2. Thus in the strip state shown, /~k = 8, 8, 8, 0, 0 
for k of type 1, 2, 3, 4, 5, respectively, and /~k/= l~'k~ = 0. TO prove that our 
decomposition of the Hamiltonian is an m-potential, we must show that 
these values are in fact the minimum of each of these functions. As in 
Section 2, this is easily done on the computer. 

Finally we ask what are the ground states of the Hamiltonian. By the 
results of Section 2, in the interior of the parallelogram the configuration 
must be in one of the four strip states. Now consider the top horizontal 
edge of the parallelogram. For  1 of type 5 we have E~ = 0, so the original 
spins in the 4 by 4 squares of type 5 must all be + 1. Now let k be a type 
1 square just below a type 1 square/ .  Then Ek = 8 and so Uk = 0. We also 
have D /=  O, so l~k/= VkV But l~'k/= O, SO V,t = O. Since the spins in square 
I are all + 1, it follows that a particular strip state is picked out for square 
k. The same argument applies to the bottom edge of the parallelogram. The 
height of the parallelogram is chosen so that the strip state picked out by 
the top edge is the same as the one picked out by the bot tom edge. We 
have not shown that in a ground state the configuration must look like 
Fig. 6 along the edges of the parallelogram at 45 deg to the lattice direc- 
tions. In fact, it need not. There are ways to modify Fig. 6 near these two 
edges that do not raise the energy. What we have shown is that any such 
modification cannot lower the energy, and away from these two edges the 
ground state must be the strip state picked out by the horizontal edges of 
the parallelogram. 

To show that a Peierls condition is satisfied, we cannot appeal to the 
Holsztynski-Slawny theorem, since our system is not translation invariant. 
However, the same argument used in the proof of the theorem shows that 
the energy cost of a contour is at least proportional to the size of that part 
of the contour that does not run along the diagonal edges of the volume. 
Along the diagonal edges it is possible to have sections of contour that do 
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not cost any energy since the diagonal boundaries do not favor any one of  
the four ground states. However, for any contour the amount  of  the con- 
tour that can run along the diagonal edges is at most  equal to the amount  
that runs along the top and bottom edges and inside the volume. Thus for 
any contour the energy associated with the contour will be proportional to 
the size of  the contour. 
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